37 research outputs found

    Development of SkinTracker, an integrated dermatology mobile app and web portal enabling remote clinical research studies

    Get PDF
    IntroductionIn-person dermatology clinical research studies often face recruitment and participation challenges due to travel-, time-, and cost-associated barriers. Studies incorporating virtual/asynchronous formats can potentially enhance research subject participation and satisfaction, but few mobile health tools are available to enable remote study conduct. We developed SkinTracker, a patient-facing mobile app and researcher-facing web platform, that enables longitudinal collection of skin photos, patient reported outcomes, and biometric health and environmental data.MethodsEight design thinking sessions including dermatologists, clinical research staff, software engineers, and graphic designers were held to create the components of SkinTracker. Following iterative prototyping, SkinTracker was piloted across six adult and four pediatric subjects with atopic dermatitis (AD) of varying severity levels to test and provide feedback on SkinTracker for six months.ResultsThe SkinTracker app enables collection of informed consent for study participation, baseline medical history, standardized skin photographs, patient-reported outcomes (e.g., Patient Oriented Eczema Measure (POEM), Pruritus Numerical Rating Scale (NRS), Dermatology Life Quality Index (DLQI)), medication use, adverse events, voice diary to document qualitative experiences, chat function for communication with research team, environmental and biometric data such as exercise and sleep metrics through integration with an Apple Watch. The researcher web portal allows for management and visualization of subject enrollment, skin photographs for examination and severity scoring, survey completion, and other patient modules. The pilot study requested that subjects complete surveys and photographs on a weekly to monthly basis via the SkinTracker app. Afterwards, participants rated their experience in a 7-item user experience survey covering app function, design, and desire for participation in future studies using SkinTracker. Almost all subjects agreed or strongly agreed that SkinTracker enabled more convenient participation in skin research studies compared to an in-person format.DiscussionTo our knowledge, SkinTracker is one of the first integrated app- and web-based platforms allowing collection and management of data commonly obtained in clinical research studies. SkinTracker enables detailed, frequent capture of data that may better reflect the fluctuating course of conditions such as AD, and can be modularly customized for different skin conditions to improve dermatologic research participation and patient access

    A comparison of polarized and non-polarized human endometrial monolayer culture systems on murine embryo development

    Get PDF
    BACKGROUND: Co-culture of embryos with various somatic cells has been suggested as a promising approach to improve embryo development. Despite numerous reports regarding the beneficial effects of epithelial cells from the female genital tract on embryo development in a co-culture system, little is known about the effect of these cells when being cultured under a polarized condition on embryo growth. Our study evaluated the effects of in vitro polarized cells on pre-embryo development. METHODS: Human endometrial tissue was obtained from uterine specimens excised at total hysterectomy performed for benign indications. Epithelial cells were promptly isolated and cultured either on extra-cellular matrix gel (ECM-Gel) coated millipore filter inserts (polarized) or plastic surfaces (non-polarized). The epithelial nature of the cells cultured on plastic was confirmed through immunohistochemistry, and polarization of cells cultured on ECM-Gel was evaluated by transmission electron microscopy (TEM). One or two-cell stage embryos of a superovulated NMRI mouse were then flushed and placed in culture with either polarized or non-polarized cells and medium alone. Development rates were determined for all embryos daily and statistically compared. At the end of the cultivation period, trophectoderm (TE) and inner cell mass (ICM) of expanded blastocysts from each group were examined microscopically. RESULTS: Endometrial epithelial cells cultured on ECM-Gel had a highly polarized columnar shape as opposed to the flattened shape of the cells cultured on a plastic surface. The two-cell embryos cultured on a polarized monolayer had a higher developmental rate than those from the non-polarized cells. There was no statistically significant difference; still, the blastocysts from the polarized monolayer, in comparison with the non-polarized group, had a significantly higher mean cell number. The development of one-cell embryos in the polarized and non-polarized groups showed no statistically significant difference. CONCLUSION: Polarized cells could improve in vitro embryo development from the two-cell stage more in terms of quality (increasing blastocyst cellularity) than in terms of developmental rate

    Variable effect of co-infection on the HIV infectivity: Within-host dynamics and epidemiological significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have implicated viral characteristics in accounting for the variation in the HIV set-point viral load (spVL) observed among individuals. These studies have suggested that the spVL might be a heritable factor. The spVL, however, is not in an absolute equilibrium state; it is frequently perturbed by immune activations generated by co-infections, resulting in a significant amplification of the HIV viral load (VL). Here, we postulated that if the HIV replication capacity were an important determinant of the spVL, it would also determine the effect of co-infection on the VL. Then, we hypothesized that viral factors contribute to the variation of the effect of co-infection and introduce variation among individuals.</p> <p>Methods</p> <p>We developed a within-host deterministic differential equation model to describe the dynamics of HIV and malaria infections, and evaluated the effect of variations in the viral replicative capacity on the VL burden generated by co-infection. These variations were then evaluated at population level by implementing a between-host model in which the relationship between VL and the probability of HIV transmission per sexual contact was used as the within-host and between-host interface.</p> <p>Results</p> <p>Our within-host results indicated that the combination of parameters generating low spVL were unable to produce a substantial increase in the VL in response to co-infection. Conversely, larger spVL were associated with substantially larger increments in the VL. In accordance, the between-host model indicated that co-infection had a negligible impact in populations where the virus had low replicative capacity, reflected in low spVL. Similarly, the impact of co-infection increased as the spVL of the population increased.</p> <p>Conclusion</p> <p>Our results indicated that variations in the viral replicative capacity would influence the effect of co-infection on the VL. Therefore, viral factors could play an important role driving several virus-related processes such as the increment of the VL induced by co-infections. These results raise the possibility that biological differences could alter the effect of co-infection and underscore the importance of identifying these factors for the implementation of control interventions focused on co-infection.</p
    corecore